
Efficient File Transmission and Load Balancing using
Multicast over Dynamic Bandwidth Weighted Links

Onkar Habbu, Jayant Golhar, Chinmay Nalawade, Sunil Mane

Department Of Computer Engineering,
College Of Engineering, Pune-411005

Abstract— The proposed paper presents the algorithm for
Efficient transmission of files having very large size from
server to each of the client who request for that file. The
technique is ideal for data sensitive networks. This project
reduces the time required for the transfer of file compared to
traditional client-server transmission due to addition of
intermediate steps. The file is split in number of parts is
determined by the algorithm. Then, the dynamic ratio of the
bandwidth of different links between server and requesting
clients is taken. The algorithm decides how many parts of the
split file has to be sent via links connected to server depending
upon the bandwidth of the links. The remaining parts of the
file are taken from other clients having the same file. This
results in substantial decrease in the network time required for
the transmission of all the parts. Even after considering the
overhead of splitting and joining the file at both the ends, this
technique shows considerable improvement over traditional
method. The load on the server is also substantially reduced
depending upon the dynamic values given by the algorithm.

I. INTRODUCTION

Today, on the web, one of the most common research area is
to increase the speed we get while file transfer. In industries
or many other networks, we come across situation where we
have to send a large file from the server to the clients. Given
that, there may be the situation where same file will be
required by number of clients adding to redundancy on
server side by sending them again and again. This will not
only result in huge traffic on server links but also consume
server resources to much greater extent. In this paper, we
propose the solutions that will improve the situation
considering both the above said parameters. By providing
these solutions we also argue that these are the best solutions
comparing the outputs of traditional methods and by using
this solution. Though this solution work in all types of
networks, it is ideal for data intensive networks where file
size is considerably large.

The main idea behind the solution we are proposing is the
optimum consumption of network bandwidth by
Parallelization of data transfer over different bandwidth
weighted links at run time. The file has to be sent from
server and received by the client but the intermediate steps in
our case are different. First, file is split into different parts.
The algorithm we propose decides the size of each part and
number of parts. Then, we calculate the dynamic bandwidth
ratio of all the clients requesting the same file to the server.
Then, ideal ratio in which the number of parts are sent to

different parts is calculated by the algorithm. Then, clients
communicate with each other and on the basis of bandwidth
ratio each client gets the remaining parts from other clients.
In this way, the parallelization of file transfer takes place
reducing the time required for actual transmission of file.
This also performs the important task of load balancing as
server is ready to serve other requests with its full capacity
after sending only some of the parts to each client.
Technically, server has to send the complete file only once
irrespective of the number of requests and client.

II. RELATED WORK

a. Traditional file transfer
If there is server and hundreds of clients then traditional file
transfer would require a file to send from server to each and
every client requesting that particular file, no matter what
the file size is, whether the file is same or not, the time of
request and availability of bandwidth and resources. If the
file required by number of client is same, it introduces
unnecessary redundancy in network traffic. This leads to
extravagant load on server bandwidth and resources. In this
case the file transfer is complete only when each and every
client downloads the complete file. So time required by each
client to download the same file depends on the bandwidth
of the link between each client and server.

III. PROPOSED SYSTEM

a. Working
The system we are proposing is dynamic, time-efficient and
load balancing in nature. If a client requests for a particular
file, our server waits for some arbitrary time rather than
immediately transferring the file to that client. If during this
window of time another few clients request for the same file,
server will store all the requests along with their IP’s,
Bandwidth of the intermediate link which is calculated
dynamically. Then, after the waiting time is over, server
calculates the ratio of the bandwidths between all the links to
clients who requested the same file during window time.
Then, the algorithm (explained in ahead section) calculates
the ideal ratio of the bandwidth and maps it to the ratio of the
parts of file to be sent over these different bandwidth
weighted links. This ratio gives the number of parts in which
file needs to be split. Then, file is split into these many parts.
Server multicasts the different parts of the file to different
requesting clients as decided by the aforementioned

Onkar Habbu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014,3044-3046

www.ijcsit.com 3044

algorithm. Server also multicasts all the information like
which client possesses how many and which parts of the file,
what is the bandwidth of the intermediate links, IP’s of all
the clients to all the clients. The job of server ends here.
Now, it is the responsibility of client to ask other clients for
the remaining parts of the file. This is possible as client has
all the information about other clients requesting for the
same file as mentioned before. Client request other clients
for the remaining parts and get them simultaneously from
number of clients. Finally, client checks with the
information it has about the parts of the file and if the
number of parts received by clients through server and all
other clients is equal to the total number of parts, client
combines these parts of file to get original file.

b. Advantages
1. The parallelization of the data transfer.

For example Suppose, server S has two clients – client A
and client B and ratio of the bandwidth between links
SA and SB is “1/3”. Now, if both clients A and B
request file F from server having size 100 MB and the
algorithm splits the file into 4 parts having size 25 MB
each. Then, server sends part I to A and next 3 parts II,
III, IV to B. But, after sending parts I and II to A and B
respectively, instead of remaining idle, A sends the part
I and receive parts II, III and IV from B at the same time
when server is sending remaining parts to B.

2. Dynamic Load Balancing.
Consider the above mentioned case in advantage 1. Here,

the total data transfer server does is actually equal to the
size of single file (Sum of all the parts of file). It is
independent of the number of clients requesting the
same file. This incredibly reduces the load on the server
side in terms of bandwidth and resources. It shifts this
load to client side which were otherwise idle.

3. Scalability
The system we are proposing is highly scalable. In fact,

more the number of clients, more is the improvement in
the performance. This is possible as clients share the
load of the server. Hence, more the number of clients,
less is the load on the server and thereby more is the
performance.

4. Time efficient file transfer.
As explained in point 1 and point 2, the load of data

transfer is optimally shared by server and clients. This
results in the optimum use of network bandwidth
resulting in drastic reduction in time required for file
transfer.

IV. ALGORITHM

1. First client requests for a particular file.
2. Server will wait for arbitrary window time.
3. Form a group of clients which are requesting same file.
4. Measure the Bandwidth of the links between server and

each client that fall within the group.
5. Find minimum bandwidth in that group.

6. Take the ratio of bandwidth of each client with respect to
minimum bandwidth

E.g. let {B1, B2, B3.....Bn} be the bandwidth of clients
{C1, C2, C3,.....Cn}

Let Bm be the minimum bandwidth.
So the list formed by taking the ratio of bandwidth of each

client to minimum bandwidht is {B1/Bm, B2/Bm,
B3/Bm,....Bn/Bm}

7.Calculate the minimum roundup loss and corresponding
ideal multiplier.

 In order to calculate the minimum roundup loss we
multiply every item of the ratio list by number from 1 to
10 and also the nearest integer by number from 1 to 10
and calculate the total round up loss by adding the round
up losses for each multiplier for all elements in the ratio
list.
Ex. Now {B1/Bm, B2/Bm, B3/Bm,....Bn/Bm} is the
ratio list.
The total round loss for any multiplier is calculated as
follows
Roundup_loss(for p as multiplier) = ((B1/Bm * p -
int(B1/Bm) * p) + (B2/Bm * p - int(B2/Bm) * p) +
(B3/Bm * p - int(B3/Bm) * p) + ...+ (Bn/Bm * p -
int(B1/Bm) * p))
In this way the value of p is varied from 1 to 10 and
corresponding round up losses for each multiplier be
{R1, R2, R3,...., R10}.

8. We calculate the minimum round up loss by taking
minimum from {R1, R2, R3,...., R10}.

9. The ideal multiplier is found by finding the index of the
minimum round up loss in the {R1, R2, R3,...., R10}

10. Each item in the ratio list is multiplied by the ideal
multiplier.

11. Sum all the items in the ratio list to find the ratio total.
12. The ratio total is multiplied by the ideal multiplier to

calculate the number of parts in which the file should be
split at the server.

12.1 Number of parts = ratio total * ideal multiplier
13. To find the number of parts that should be sent to each

client we divide each item in the ratio list by the ratio
total and multiply by Number of parts.
13.1 Let {B1/Bm, B2/Bm, B3/Bm,....Bn/Bm} be the
ratio list obtained after step 10
13.2 Rt be the ratio total obtained in step 11
Let No be the number of parts obtained in the step 12.1
The no of parts that will be sent to 1 client will be p1 =
B1/Bm / Rt * No

14. In this way the number of parts is calculated for each
client to get the list = {p1, p2, p3,, pn}

15. Then, the number of parts as decided by above list are
sent to different clients.

16. Then, client uses the information received by the server
and get the remaining parts from other clients
simultaneously.

17. Once all the parts are received, each client combines all
the parts to get the original file.

Onkar Habbu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014,3044-3046

www.ijcsit.com 3045

V. RESULTS

a. Time verses File Size.

This graph shows the improvement of system by applying
the solution we propose over traditional file transfer system.
As the file size increases, the margin of improvement also
increases making it ideal for data intensive networks.
b. Time verses Number of clients

This graph shows how the performance of system improves
with the increase in the number of clients. This is really
contradictory to the traditional file transfer system as here,
the average file transfer time decreases with the increase in
number of clients. The prime reason behind this is that
clients share the load of server in this system. Hence, more
the number of clients, more the resources and bandwidth
available.
c. Load Balancing

This graph shows how load on server side is reduced
drastically as the number of request increases. In our
proposed system, the clients share the load of server which
were otherwise idle.

VI. FUTURE SCOPE

If we only consider the network transfer time i.e. time
required to transfer the parts of file and not combining them,
the result would have been much better. The splitting and
combining of files at both the ends add the extra overhead.
There is a scope in future if we can reduce this extra
overhead so that system improvement would be surprisingly
high. The combining of files could be done at run time as
one of the approach towards achieving this.

VII. CONCLUSION

To conclude, we would like to describe the our proposed
system as an efficient alternative to the traditional file
transfer system. It not only improves the performance but
also balances the load on server and clients. This system is
highly scalable, in fact higher the number of clients, higher
is the system performance. This system is ideal for the data
intensive networks where servers has to serve for many
requests at the same time.

REFERENCES
[1] Tatsuhiro Chiba, Mathijs den Burger, Thilo Kielmann and Satoshi

Matsuoka, “Dynamic Load-Balanced Multicast for Data Intensive
applications,” 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing.

[2] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble, “A
Measurement ‘Study of Peer-to-Peer File Sharing Systems” Dept. of
Computer Science and Engineering, Univ. of Washington, Seattle,
WA, 98195-2350.

[3] Chao Gong, Ovidiu Daescu, Raja Jothi, Balaji Raghavachari, Kamil
Sarac, “Load Balancing for Reliable Multicast,” Department of
Computer Science, University of Texas ar Dallas Richardson, TX,
USA.

[4] M. Matsuda, T. Kudoh, Y. Kodama, R. Takano and Y. Ishikawa,
“Efficient mpi collective operations for clusters in long-and –fast
networks,” in IEEE International Conference on Cluster
Computing(cluster 2006), 2006.

[5] K. Takahashi, H. Saito, T. Shibata and K. Taura, “A stable broadcast
algorithm,” in 8th IEEE International Symposium on Cluster
Computing and the Grid(CCGrid), 2008, pp.392-400.

[6] T. chiba, T. Endo and S. Matsuoka, “High-performance mpi broadcast
algorithm for grid environments utilizing multi-lane NICs,” in 7th
IEEE International Symposium on Cluster Computing and the
Grid(CCGrid), 2007, pp.487-494.

Onkar Habbu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014,3044-3046

www.ijcsit.com 3046

